Code: 22ECMC2T6B

I M.Tech - II Semester - Regular Examinations - JULY - 2023

RF IC DESIGN (MICROWAVE & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 60

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks			
	UNIT-I							
1	a)	List any four RF applications and describe	L2	CO1	8 M			
		the steps for RF circuit design.						
	b)	Explain sensitivity and dynamic range of the	L2	CO1	7 M			
		RF circuit.						
OR								
2	a)	Describe the characteristics of passive IC	L2	CO1	7 M			
		components at RF frequencies.						
	b)	Compare the characteristics of co-axial line	L3	CO1	8 M			
		and two -wire line.						
UNIT-II								
3	a)	Explain bandwidth enhancement with fT	L2	CO2	8 M			
		doublers.						
	b)	Describe the importance of current-reuse	L2	CO2	7 M			
		approach that helps in low-noise amplifier.						

		OR						
4	a)	Explain power constrained noise	L2	CO2	8 M			
		optimization technique in low noise						
		amplifier design.						
	b)	Discuss about linearity and large signal	L2	CO2	7 M			
		performance of LNA.						
	(2)	UNIT-III	1.2	CO2	6 M			
5	a)	Distinguish between different types of mixers.	L3	CO3	6 M			
	b)	Draw and explain the super-heterodyne	L2	CO3	9 M			
	ĺ	receiver block diagram and mention the						
		importance of mixer in receiver.						
OR								
6	a)	Describe the specifications of Mixer.	L2	CO3	6 M			
	b)	Explain about diode-ring mixer with neat	L2	CO3	9 M			
		diagram.						
UNIT-IV								
7	a)	Explain about RF synthesizer architecture.	L2	CO4	10 M			
	b)	Differentiate static moduli and dithering	L3	CO4	5 M			
		moduli.						
OR								
8	a)	Describe the importance of negative	L2	CO4	9 M			
		resistance oscillator and explain Simple						
		differential negative resistance oscillator						
		with neat diagram.		~ - :				
	b)	Explain the effect of phase noise in RF	L2	CO4	6 M			
		communication.						